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Strange attractors with Lyapunov dimensiondL,3 can be classified by branched manifolds. They can also
be classified by the bounding tori that enclose them. Bounding tori organize branched manifolds(classesof
strange attractors) in the same way as the branched manifolds organize the periodic orbits in a strange attractor.
We describe how bounding tori are constructed and expressed in a useful canonical form. We present the
properties of these canonical forms and show that they can be uniquely coded by analogs of periodic orbits of
periodg−1, whereg is the genus. We describe the structure of the global Poincaré surface of section for an
attractor enclosed by a genus-g torus and determine the transition matrix for flows between theg−1 compo-
nents of the Poincaré surface of section. Finally, we show how information about a bounding torus can be
extracted from scalar time series.
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I. INTRODUCTION

Obtaining a global, qualitative understanding of the struc-
ture of chaotic attractors in dissipative dynamical systems
must be pursued using topological methods. Only in this way
can we uncover general properties that are common to a
large class of systems and are invariant under continuous
deformations that are orientation preserving diffeomor-
phisms. Once obtained, such knowledge can be best utilized
by constructing a classification scheme for chaotic attractors
which is of immense importance for the maturity of the field
of nonlinear dynamics.

We have recently proposed a new tool—bounding
tori—as a means for classifying low-dimensional strange at-
tractors[1]. These are strange attractors that can be embed-
ded inR3, whose Lyapunov dimensiondL is less than three.
The purpose of this work is to provide information about
how these bounding tori are constructed, what their proper-
ties are, and how they are used. In Sec. II we provide back-
ground information to show how this new tool is related to
the topological tools that we have previously introduced to
classify and analyze low-dimensional strange attractors.
These tools are relative rotation rates[2], branched mani-
folds [3], and basis sets of orbits[4]. In Sec. III we discuss in
detail how bounding tori are constructed for a well-known
strange attractor—the Lorenz attractor. In particular, we de-
scribe how the bounding torus is expressed in a particular
canonical form. In Sec. IV we discuss canonical forms and
their general properties. Canonical forms allow us to provide
a precise answer to a difficult question: “What is the struc-
ture of the Poincaré surface of section for a strange attrac-
tor?” The Poincaré surface of section hasg−1 disconnected
components when the strange attractor can be enclosed in a
torus with gù3 holes(genus-g surface). This is shown in
Sec. V. In the following section we construct transition ma-
trices describing how the flow distributes initial conditions
on each component to the other components of the Poincaré
section. In Sec. VII we introduce three different but related
ways to classify canonical forms. Each involves an orbit of
periodg−1. All canonical forms up tog=9 are listed in Sec.
VIII. Procedures for extracting information about the canoni-

cal form from experimental data are presented, along with an
example, in Sec. IX. Our results are summarized in the con-
cluding section.

II. BACKGROUND

Even in low-dimensional dynamical systems we find a
very rich variety of possible structures due to an intricate
interplay between topology and dynamics. In this paper we
deal exclusively with chaotic attractors inR3 with Lyapunov
exponentsl1.0,l2=0,l3,0 and Lyapunov dimensiondL
=2+l1/ ul3u ,3. In phase spaceR3 we can rely on a large set
of important results from topology to construct a classifica-
tion scheme. In Ref.[1] we laid out the foundations of the
third coarsest level of a classification scheme, for which the
first two levels have already been completed[5,6]. At the
finest level strange attractors are classified by a basis set of
orbits [4]. This is defined as follows: for every finite period
there exists a finite set of unstable periodic orbits embedded
with the attractor that forces the existence of all the other
unstable periodic orbits. At the intermediate level there is a
classification by branched manifolds. Branched manifolds
serve as periodic orbit organizers. They are built from two
basic structures—splitting and joining charts. These charts
represent the two basic processes—stretching and
squeezing—that act in phase space to produce chaotic behav-
ior, generate strange attractors, and organize all the unstable
periodic orbits in the strange attractor in a unique way. Split-
ting and joining charts are connected in such a way that there
are no free ends. Their connected union forms a compact
two-dimensional structure with boundary. It is a manifold
everywhere except at the singularities of the charts—branch
lines for the joining charts and splitting points for the split-
ting charts.

Branched manifolds(also known as templates or knot
holders) were first introduced by Birman and Williams[7] to
facilitate the study of the topological organization of knotted
and linked periodic orbits for flows inS3. Their work found
an immediate application in the study of chaotic attractors in
three-dimensional dynamical systems but the results apply
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directly only to hyperbolic strange attractors. The hyperbolic
limit has never been observed either in experiments or in
numerical solutions of systems of ordinary differential equa-
tions (ODEs). The extension of the branched manifold ap-
proach to nonhyperbolic strange attractors can be done via
the mechanism of basis set of orbits described above. In the
nonhyperbolic case we in general see fewer unstable periodic
orbits in the flow than predicted by the template. The orbits
that are present are organized exactly as the orbits in the
template(the same set of linking numbers). To characterize
the set of orbits actually present in the flow we need to
specify the basisset of orbits. Different chaotic attractors can
be characterized by the same branched manifold but different
basis sets. This is the relation between the first two levels of
the classification scheme.

In this paper we explore the possibility for construction of
a third level of classification. It is based on canonical
forms—planar surfaces with nonzero genus and dressed with
one-dimensional flow reflecting the nature of the singulari-
ties in the branched manifold. These planar surfaces are in-
troduced in a formal way as follows. First we introduce an
embedding manifold for the strange attractor(and its
branched manifold). This is not something preexisting in
phase space with certain size and it should not be confused
with domain of attraction. It is a specifically constructed
compact orientable three-manifold with boundary. The
boundaries are well known and classified surfaces—tori with
genus 1 or higher. The purpose of such an embedding mani-
fold is to “enclose” the strange attractor and isolate it from
the fixed points of the flow. The global topological structure
of the chaotic attractor is determined to a large extent by the
type and location in phase space of such fixed points[8]. The
existence of fixed points in the flow leads to the robust pres-
ence of holes in the body of the attractor. In addition to this
there is also a set of singularities for the flow when restricted
to the boundary surface of the embedding manifold. The
number of these singularities reflects not only the genus of
the surface but also the number of singular sets for the
branched manifold. At the next step, following a formal pro-
cedure, we introduce a special type of planar surface called a
canonical form, which is a simplified record of the genus of
the embedding manifold and the singularities on its bound-
ary. It turns out that canonical forms have a very rich but
rigid organization and are ideally suited for classifying
branched manifolds. In addition, in the same way as the knot
holders are orbit organizers we can say that embedding
manifolds and their canonical forms are knot holder
organizers—many different branched manifolds with the
same set of singularities but different number of branches
can live inside the same embedding manifold.

In support of our idea to use embedding manifolds we
would like to make the following remark. This is the most
natural context in which concepts from algebraic topology
such as homology groups and homotopy groups can be in-
troduced to provide a hint at the global structure of the at-
tractor. There have been some attempts in the literature to
introduce the notion of homology groups for a strange attrac-
tor [9,10]. We prefer to use an indirect correspondence since
this way the question of precise mathematical definition of
the properties of a strange attractor as a topological space is

avoided. Dealing with well-defined smooth topological ob-
jects is preferable.

III. EXAMPLE—THE LORENZ SYSTEM

To illustrate our approach we provide one example. It is
the well-known Lorenz system of ODEs[11]. The equations
are

ẋ = − ssx − yd,

ẏ = rx − y − xz,

ż= − bz+ xy. s1d

A solution approaching the strange attractor is computed nu-
merically for parameter valuesss ,r ,bd=s10,28,8/3d and is
plotted in Fig. 1. The system is dissipative everywhere in
phase space. For the parameter values listed above there are
three fixed points. There is a saddle fixed point at the origin.
The linearized system about this point has two real negative
and one positive eigenvalues. The equations are invariant
under the discrete rotation groupRzspd and thez axis is part
of the stable manifold of the saddle fixed point. There are
also two symmetrically placed fixed points. They are un-
stable foci—the linearized system about each of them has
one real negative eigenvalue and two complex conjugate ei-
genvalues with positive real part. All solutions of the Lorenz
system remain bounded for all time. Solutions originating far
away from the origin are attracted asymptotically to an ellip-
soid in phase space containing the strange attractor and the
three fixed points[11]. From a topological point of view this
ellipsoid is a three-dimensional ball whose boundary is a
two-dimensional sphere.

Next we carry out a construction that is common in
topology—starting from a given topological space we turn it
into a different space by removing certain regions in it. First
we remove the fixed points from the ellipsoid(the ball). Next
we remove one-dimensional invariant manifolds of the fixed
points that extend globally and intersect the bounding two-
sphere of the ball. For the two foci this means a removal of
their one-dimensional stable manifolds, and for the saddle

FIG. 1. Solution of the Lorenz system of ODEs approaching a
strange attractor. Control parameter values:ss ,r ,bd=s10,28,8/3d.
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point at the origin elimination of thez axis altogether. In fact
the stable(two-dimensional) manifold of the fixed point at
the origin has a very complex structure that has profound
influence on the behavior of chaotic solutions. We can, how-
ever, delete thez axis from it on the premises that solutions
starting on thez axis remain there forever—nothing interest-
ing happens. Thus we started with a three-ball containing the
attractor and the fixed points, and then we drill holes in it
along the one-dimensional stable invariant manifolds
through the fixed points that intersect the boundary of the
attracting ellipsoid. This turns the ellipsoid into a solid block
with three holes. The technical term for such an object is a
handle-body of genus 3. The boundary of this three-manifold
is a closed orientable two-dimensional surface—a torus with
genus 3. This boundary is a trapping surface in some rather
loose sense—all solutions starting on the outside of the
handle-body and tending to the chaotic attractor cross the
boundary in finite time, from the outside to the inside, and
never escape from the interior. Note that parts of the invari-
ant manifolds of the saddle fixed point at the origin still exist
inside the handle-body.

By the above construction we establish a formal corre-
spondence between the chaotic attractor for the Lorenz sys-
tem and an embedding three-manifold(a handle-body) that is
bounded by a torus with genus 3. This may seem rather
arbitrary at this stage but it is not entirely unjustified since it
is based not only on topological considerations but also on
dynamical ones. To provide an alternative view, next we look
at the branched manifold associated with the chaotic attractor
of the Lorenz system.

First, we start with the branched manifold given in the
usual “mask” representation—it is shown at the top of Fig. 2.
Note that in this representation the branch line is
degenerate—the semiflow upon crossing it is redirected into
two different regions of the branched manifold. It is possible
to split the branch line in two and “slide” the pieces around
the circular holes in the template. This is an example of a
branched manifold transformation called a local move. The
possible local moves are discussed in Ref.[6]. In the next
stages we extend the splitting point backwards and then give
the right branch line a half twist. The result is a branched
manifold as shown at the bottom of Fig. 2.

Note that in the final form of the template, when viewed
in this projection on the plane, the semiflow goes around the
circular holes in the same direction—clockwise. Now we can
“blow up” the resulting branched manifold back to a three-
manifold. This is done by surrounding each point in the
branched manifold by a small three-dimensional ball of ra-
dius e and taking the union of these balls. It is clear that in
this case the resulting space has the topology of a handle-
body of genus 3; this is consistent with our previous conclu-
sion. All branched manifolds in Fig. 2 describe the same
topological organization of periodic orbits and thus they cor-
respond to chaotic attractors that are related by orientation
preserving diffeomorphisms.

Now let us go back to the original phase space and con-
sider what happens when the flow crosses the torus that
bounds the embedding handle-body. We assume that the
boundary is a smooth surface. This can always be achieved
since we allow ourselves to modify the boundary any way

we wish, provided we do not change the genus. If the handle-
body is HB, its boundary is]HB. At each point on the
boundary we can decompose the flow into a tangentialvW i and
a normalvW' component. The normal component never van-
ishes since the flow goes into the bounded region. The tan-
gential component could be zero and this leads to a fixed
point for the surface flow. The Euler characteristic for the
torus with genusg=3 is x=2−2g=−4. A well-known theo-
rem from topology—the Poincaré-Hopf Index Theorem
[12]—relates the sum of the indices evaluated at all fixed
points i of the flow restricted to the surface to the Euler
characteristic of the surface:

xs] HBd = o
i=1

n

indisvW id. s2d

The fixed points for the surface flow can only be saddles due
to the fact that there is one positive and one negative
Lyapunov exponent in directions transverse to the flow. The
index of each fixed point for the surface flow iss−1dnu,
wherenu is the number of unstable directions for the flow. In
our case the index can be only −1. We have a total of four
saddle points for the surface flow on the torus bounding the
branched manifold at the bottom of Fig. 2. The singularities
on the genus-3 surface enclosing the branched manifold

FIG. 2. Transformation of the branched manifold for the Lorenz
system into a different form by applying a series of local moves.
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shown at the bottom of Fig. 2 are shown in Fig. 3. Note also
that the branched manifold has four singular sets—two
branch lines and two splitting points. This shows that there is
some relation between the singular sets of the branched
manifold and the fixed points for the flow on the surface of
the bounding torus. Thus we are led to look for some con-
venient way to express this relation.

We now propose an algorithm for constructing this ca-
nonical form. First, in the original phase space we construct
a smooth surfaceS that is an embedding of a two-
dimensional disk inR3. Apart from being orientable and
bounded by a topological circle, the surface is constructed so
that the following conditions are true:

(1) It contains the two unstable focal points.
(2) The two-dimensional unstable manifolds of the focal

points are tangent to the surfaceS at the locations of the foci.
(3) The flow on these unstable manifolds provides an ori-

entation for the surface.
(4) Thez axis (which was to be removed when construct-

ing the handle-body as an embedding manifold) intersects
the surface at one point.

Condition(3) forces the surface to be nonflat(twisted) as
viewed in the embedding handle-body. When walking on one
side of the surfaceS we see the flow going around both focal
points in the same sense(let us say clockwise). Next we
remove three points from the surface—the two focal points
and the point of intersection with thez axis. This turnsS into
a genus-3 surfaceV. Consider a small circle inV, surround-
ing the just-removed point of intersection with thez axis.
The induced one-dimensional flow along this circle will have
four singularities that are alternately sources and sinks(join-
ing and splitting points). They correspond in a formal way to
the singularities in the branched manifold of the attractor—
respectively to the branch lines and the splitting points. The
surfaceV can be mapped one-to-one to a planar surface
having the same genus, orientation, and the same number
and type of singular points. This is represented in Fig. 4.
Next we simplify the matter even further by introducing
something that we call a canonical form. It is a planar surface
with genus 3 in the case of the Lorenz attractor. The outside
boundary is given an orientation. The inside boundary con-
sists of three disjoint pieces—two circles and a square in

between. The circles are provided with the same orientation
as the outside boundary. The square is dressed with one-
dimensional flow in such a way that the vertices of the
square are alternately sources and sinks for the flow(cf. Fig.
3). The canonical form is a simplified representation ofV
and its flow singularities. There is a correspondence between
these four objects—a chaotic attractor, an embedding mani-
fold (with no fixed points inside), a branched manifold, and a
canonical form. The relationship is illustrated as follows:

Strange attractor ↔ Branched manifold

↓ ↓ ↓ ↓ ↓ ↓
Embedding manifold ↔ Canonical form.

This means that there is a 1-1 correspondence between
strange attractors and branched manifoldsswith a basis set of
orbitsd. There is also a 1-1 correspondence between embed-
ding manifolds and their canonical forms, up to smooth de-
formations. Many inequivalent strange attractors can be con-
tained in the same embedding manifold. In the same way,
many different branched manifolds can be enclosed by the
same bounding torus. For example in Fig. 5 we show two
different branched manifolds represented by the same ca-
nonical form.

IV. BOUNDING TORI AND CANONICAL FORMS

The boundary of the embedding manifold for a strange
attractor in R3 is a union of closed orientable two-
dimensional surfaces of genusgù1. This boundary also en-

FIG. 3. The branched manifold at the bottom of Fig. 2 is shown
enclosed by a bounding torus of genus 3. All three fixed points in
the vector field generating the flow are outside the bounding torus.
The flow around the two foci, as well as the regular saddle that
separates them, is shown. The four singularities on the surface in-
duced by the flow in the neighborhood of the central hole are shown
as dots and the flow directions in the neighborhood of these four
singularities are shown. All four singularities are regular saddles.

FIG. 4. (a) Two-dimensional genus three surfaceV that has an
orientation induced by the flow around the focal points.(b) Planar
equivalent ofV indicating the singular set of the induced flow.(c)
Canonical form.
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closes the branched manifold since the unstable periodic or-
bits in the attractor are mapped to the branched manifold
under the Birman-Williams projection. In that sense the
branched manifold “sits” inside and is enclosed by the
bounding torus. The flow for the original dynamical system
that generates a strange attractor has 2sg−1d singularities
when restricted to the genus-g surface. An algorithm for pro-
jecting these flow properties onto a planar surface(preceding
section and Fig. 4) generates a disk with an outer boundary
andg interior holes. The flow on the outer disk boundary is
in a single direction(either clockwise or counterclockwise)
without singularities. All singularities are distributed around
the interior holes. The singularities occur in pairs. We call
thesess, jd pairs, where ans-type singularity splits the flow
and a j-type singularity occurs where flows from different
regions join. Singularities of typess and j describe the
nearby presence of splitting and joining charts in the embed-
ded branched manifold. The distribution of singularities
around the interior holes has a profound effect on the struc-
ture of the flow. We show holes with 0, 2, 4, and 6 singulari-
ties in Fig. 6. For the most part, holes separate the flow, as
represented by the branched manifold, from the singularities
in the vector field that generates the flow. The hole in Fig.
6(a) has no singularities. It separates a focus from the flow.
The flow itself bears an imprint of this focus. The regular
saddle shown in Fig. 6(c) induces four singularities on the
hole surrounding it. This saddle also leaves its imprint on the
structure of the flow in its neighborhood. The threefold de-
generate saddle shown in Fig. 6(d) induces 233 singularities
on the surrounding hole in the canonical form. This degen-
erate saddle also provides an unmistakable imprint on the
structure of the neighboring flow in the interior of the em-
bedding manifold.

Holes supporting only oness, jd pair of singularities do
not have the same properties as holes with0,4,6, . . .singu-
larities. As shown in Fig. 6(b) they do not leave an imprint
on the surrounding flow. Such holes can be removed without
changing the nature of the neighboring flow. They can be
removed by “zipping them up”[13], that is, we identify the
two boundaries connecting thes and j singularities.

Holes with two singularities can be encountered for a
number of reasons. They are often drawn in representations
of the standard Smale horseshoe branched manifold to allow
easy distinction between the two branches. Such holes do not
exist except in the hyperbolic limit, which has never been
observed in experimental data, or even in numerical simula-
tions of ordinary differential equations. Such holes can also
be observed when large numbers of orbits have been pruned
away. They can be observed in Rössler dynamics[14] and in
the Shimizu-Morioka attractor for some parameter values.
They are encountered in short data sets. They are also seen
when invariant sets penetrate the flow(for example, placing
your finger in a laminar fluid flow). This occurs, for example,
when the Lorenz attractor is mapped to a Rössler-like attrac-
tor by modding out the symmetry[15]. They also occur
around real or virtual saddle-node pairs, as shown in Fig.
6(b). In all instances, holes with two singularities can be
(topologically) zipped up. The two singularities and the hole
they are on disappear without changing the asymptotic prop-
erties of the flow.

As a result, interior holes without singularities can be re-
garded as circles and those with singularities as regular poly-
gons with4,6,8, . . .sides.

FIG. 5. (a) Branched manifold describing the three-fold cover of
the Rössler system.(b) Branched manifold for attractor with no
symmetry.(c) Canonical form for both systems.

FIG. 6. Holes with(a) 0, (b) 2, (c) 4, and(d) 6 singularities.
Only holes with two singularities can be removed without changing
the asymptotic structure of the flow.

TOPOLOGICAL ASPECTS OF THE STRUCTURE OF… PHYSICAL REVIEW E 69, 056206(2004)

056206-5



A canonical form for a bounding torus with genus 1 has
one interior hole and no singularities anywhere. The flow on
the exterior boundary and on the interior hole is in the same
direction. A canonical form for a bounding torus with genus
g=2 does not exist, since its Euler characteristic must be −2
and that condition cannot be satisfied by any combination of
circles and polygons. Canonical forms for bounding tori with
genusgù3 havem interior circles andn interior polygons.
The positive integersm andn obey

m+ n = g, s3d

m. n ù 1, s4d

wheren=1,2, . . . ,nMAX andg is the genus. If the genusg is
odd the maximum number of regular polygons isnMAX=m
−1. In the case of even genusg the upper bound isnMAX
=m−2. As is shown in Fig. 7 the genus itself is not enough
to specify the canonical form. Even the combinationsm,nd is
not enough to specify uniquely the canonical form. Forg
sufficiently largesgù7d degeneracies occur.

We should mention that most of the known strange attrac-
tors in three-dimensional phase space are created by the
Smale horseshoe mechanism. As a result they all can be em-
bedded in a solid torus with one hole. For those systems the
canonical form is simply an annulus. For a torus with genus
1, the Euler characteristicx is zero and the surface flow has
no singularities.

In addition we want to mention a dynamical system for
which the boundary of the embedding manifold is a union of
two tori with genus 1—this is the velocity-driven Van der
Pol system. The chaotic attractor shows an annular Poincaré
surface of section. The boundary of the embedding manifold
is a disjoint union of two tori of genus 1 each. The canonical
form for this system is the union of two annuli.

One of the most important advantages in using canonical
forms is in the way Poincaré surfaces of section are viewed.
Next we provide some more insight in this direction.

V. POINCARÉ SURFACE OF SECTION

The most important characteristic of a Poincaré surface of
section is that the flow crosses it transversally and always
from the same side. This is in fact the most troublesome
point when it comes to construction of such surfaces in prac-
tice. For a general flow it is not known whether we can
always construct a Poincaré surface of section. The answer is
positive for the particular kind of systems we are interested
in: dissipative dynamical systems withdL,3. We justify this
assertion with the following considerations.

The simplest case is when the strange attractor can be
embedded in a solid torus with no fixed points inside. The
boundary is a two-torus. There are two generators of the
fundamental group(the first homotopy group) p1sT2d of the
two-torus [16]. They represent two inequivalent classes of
simple closed curves that cannot be shrunk to a point. The
classes are inequivalent under smooth deformations. The
simple closed curve that bounds a disk in the solid torus is
called a meridian. We will call the other curve a
longitude—it bounds a disk outside the solid torus and it
serves as a generator of the fundamental group of the solid
torusp1sD23S1d. In fact the notion of a longitude as applied
usually to solid torus is a bit less restrictive(see Ref.[17] for
details) but we use it provided no confusion will arise. The
notions of longitudes and meridians can be extended to
handle-bodies of higher genus. This is illustrated in Fig. 8. In
the solid torus case we can always find a disk that is crossed
transversally by the flow—namely, a disk bounded by a me-
ridian. This disk serves as a Poincaré surface of section. The
image of this disk under Birman-Williams projection and the
branch line on the branched manifold can be identified. The

FIG. 7. Canonical forms corresponding to genus-8 bounding
torus. They all have five circles, two squares, and one hexagon. The
three forms are inequivalent—they are described by different peri-
odic sequences:(a) abbacca,(b) abccbaa, and(c) abbccaa.

FIG. 8. LongitudesLi and meridiansMi for a handle-body of
genusg.
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Poincaré map for these systems is thus represented in the
canonical form representation by a mapping of intervals to
intervals. There is another possible case—when we have a
mapping of the circle onto itself. This occurs when the
Poincaré surface of section has the topology of an annulus.
This is the case with strange attractor of the velocity driven
the Van der Pol oscillator(Birkhoff-Shaw attractor[18]).

For bounding tori with genusgù3 we group the 2g−2
singularities intog−1 pairs ofs j ,sd singularities. All branch
lines must occur between a singularity of typej and the
following (in the sense of the flow) singularity of types.
Branch lines between the samej ands type singularities can
be consolidated into a single branch line by local moves[6].
This branch line can be moved to a disk that is transverse to
the flow and between these two singularities. This disk is
bounded by a meridian and forms one component of the
global Poincaré surface of section. In this way we construct
the global Poincaré surface of section for any flow whose
canonical bounding torus has genusg. The Poincaré section
is the union ofg−1 disjoint disks, one disk between each
s j ,sd pair of singularities. Each disk contains one branch line
of any branched manifold compatible with the canonical
bounding torus.

In the canonical forms(see Fig. 7) we useg−1 intervals
to show possible locations for theg−1 disks that are com-
ponents of the Poincaré surface of section. These intervals
simultaneously represent branch lines of any branched mani-
fold enclosed by the bounding torus. All such intervals have
one of their ends on the outside boundary and the other end
on some circular internal boundary. It is clear that in general
there will be one or more intervals connected to each circle.
The exact location is determined so that there are exactlyg
−1 intervals connected tom,g circles. There is no one-to-
one mapping between the intervals, but rather one-to-two
due to the splitting points in the template.

VI. TRANSITION MATRICES

An additional virtue of the canonical form representation
is the ease with which one can introduce symbolic notation.
This is done as follows. We choose an interval representing a
component of the Poincaré surface of section. We put a nu-
merical label 1 on it. Following the outside boundary in the
direction of its orientation we number all the intervals in the
order that they are encountered. Thus all intervals are labeled
1,2,3, . . . ,g−1. Then we can construct asg−1d3 sg−1d
matrix that represents how the intervals are mapped under
the flow. We call this matrix a transition matrix. We provide
an example for the canonical form in Fig. 7(a). Since the
genus is 8 the transition matrix is 737.

T =1
1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 1 0 0 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 1 1

1 0 0 0 1 0 0

2 .

The transition matrix has only 0’s and 1’s as entries. The
presence of a 1 in locationsi , jd means that initial conditions

on the intervali can flow to intervalj . Zero implies lack of
such connection. There are only two 1’s in each rowscol-
umnd. Note that elementsa12,a23,a34,a45,a56,a67,a71 are
nonzero. This is due to the way we numbered the branch
lines—going around the outer boundary and enumerating
the intervals as we encounter them. It is convenient to
split the transition matrix in two pieces—a cyclic part CL
and a connectivity part CC. The sum of the two gives the
transition matrix. All canonical forms with given genusg
have the same cyclic matrix under the numbering conven-
tion introduced above. For example, for the forms in Fig.
7 the cyclic matrix has the seven nonzero elements listed
above and is

CL8 =1
0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

2 .

The remaining part of the transition matrix shows the con-
nectivity between the components of the Poincaré surface of
sectionsrepresented by intervalsd as due to the structure of
the attractor. For example, for the canonical forms in Fig. 7
the connectivity matrices are, respectively,

CCs5,3d
1 =1

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

2 = s2,4ds5,7d,

CCs5,3d
2 =1

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

2 = s2,6ds3,5d,

CCs5,3d
3 =1

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

2 = s2,4,6d.

The lower index in the cyclic matrix name CL8 shows the
genus of the canonical form. The notation for the connectiv-
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ity matrix name is of the form CCsm,nd
i wherem is the number

of circles, n is the number of regular polygons(with even
number of sides) and i is a degeneracy index. The connec-
tivity matrices can be expressed simply in terms of symmet-
ric (permutation) group operations. They can be expressed as
products of cycles[19]. These expressions are also given in
Eqs.(5) above.

VII. CODING THE CANONICAL FORMS

Canonical forms can be labeled uniquely. The basic idea
is that in a walk around the boundary in the direction of the
flow the regular holes, the singular holes, and the branch
lines are met in a systematic way. The way is coded by a
sequence ofg−1 symbols, repeated infinitely. In other
words, the symbolic encoding of a canonical form is given
by a “periodg−1 orbit.” The symbols can describe(1) the
order in which the regular polygons are encountered between
branch lines;(2) the order in which the circles without sin-
gularities are encountered at branch lines;(3) the number of
branch lines attached to each circle without singularities, as
the circles are encountered.

For example, for the canonical form shown in Fig. 7(a)
the branch lines are labeled 1–7 in the order encountered.
Starting from branch line 1, the polygons are encountereda
first, thenb (thena again), andc. The circles are encountered
A, B, C (thenB), D, E (andD again). The first circle encoun-
teredsAd has one branch line attached,B has two,C has 1,B
has 2,D has 2,E has one, andD has 2. All these sequences
repeat as one follows the flow around again past branch line
1. The three encodings areabbacca, ABCBDED, and
1212212. Since these results are invariant under cyclic per-
mutation(i.e., change of starting point), it is useful to label
each by some “lowest” word. For the canonical forms in Fig.
7 we obtain the following strings:

Sequence of Sequence of Number of
Polygons Circles Intervals

aabbacc ABCBDED 1212212

aaabccb ABCDCBE 1221221

aaabbcc ABCBDBE 1313131

The coding in the last column easily translates into the
transition matrix for the canonical form. This is done as fol-
lows. A digit 1 in a particular position implies the existence
of a period 1 orbit(a one cycle). A digit 2 occurs in pairs and
it stands for a period 2 orbit. It forms a doublet. A digit 3
occurs in three places and denotes a three-cycle. It forms a
triplet. Multiplets do not interleave. For example, there are
two pairs of 2’s in each of the first two rows of the third
column. They stand for different period two orbits. We deci-
pher the numerical string into the CC of the transition matrix
as follows. First we write the string along the diagonal of a
sg−1d3 sg−1d matrix with all other entries equal to zero.
We keep the digits 1 in place. Digitsn.1 representingn
cycles are shifted to the proper locations on the row and
written there as 1. For example, in the first string we have a
two-cycle represented by digit 2 in the second and the fourth

positions. This means that in the connectivity matrix ele-
ments(2,4) and (4,2) will be 1. The procedure is illustrated
below for the first numerical string:

1
1 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 2

2→1
1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

2 .

Using this symbolic notation we can proceed to enumerate
all canonical forms up to genus 9. This is done next.

VIII. ENUMERATION OF CANONICAL FORMS

To provide a complete classification of canonical forms
we need to find a way to deal with degeneracy(cf, Fig. 7).
This becomes important as the genus increases above 6. For
that reason we propose a method that is reminiscent of the
use of Young partitions to classify representations of permu-
tation groups and Lie groups. The idea can be roughly de-
scribed as follows. A genusg=m+n canonical form will
have 2g−2 singularities located at the vertices ofn even-
sided regular polygons that are part of the internal boundary.
In fact these singularities occur in pairs—sources and sinks
(splitting and joining points). The problem reduces to finding
a way to partitiong−1 pairs into different sets of positive
integersù2. Each set haspi ù2 members. Two pairs repre-
sent a square in the canonical form(a regular saddle), three
pairs stand for a hexagon(threefold degenerate saddle), etc.
We list the number of pairs in nonincreasing order and
present them in the formsp1,p2,p3, . . . ,pnd, where the con-
straint is

p1 ù p2 ù p3 ù ¯ ù pn ù 2, o
i=1

n

pi = g − 1.

Such partitions are not sufficient in some casessas illustrated
in Fig. 7d. The degeneracy is lifted by using numerical
strings: e.g., 1212212. The digit in each position of the nu-
merical string represents the number of intervals connected
to a circular hole encountered in a trip along the oriented
disk’s outer boundary. Examples of such numerical strings
were shown in the preceding section. They also encode all
the information about the transition matrix of the canonical
form.

In Table I we enumerate canonical forms up to genus 9.
We list the genusg, the numberm of circular holes, the
partition of the singularities, and the numerical string from
which the connectivity matrix can be recovered. The numeri-
cal strings are unique up to a cyclic permutation.
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The number of inequivalent canonical formsNsgd in-
creases withg as follows:

g Nsgd

3 1

4 1

5 2

6 2

7 5

8 6

9 15
We speculate that this number increases exponentially

with g: Nsgd<ehg. If true, it is possible to associate an “en-
tropy” with canonical forms using the standard limiting defi-
nition:

h = lim
g→`

ln Nsgd
g

.

IX. ANALYSIS OF EXPERIMENTAL DATA

Once the branched manifold for a strange attractor has
been determined it is relatively straightforward to find the
corresponding canonical form. One drawback is that the to-
pological analysis associated with the branched manifold de-
termination is rather involved. For that matter it would be
preferable if we can go directly from the experimental data to
the canonical form. This can be done easily in lower genus
cases. We provide a simple example.

In Fig. 9 we show a chaotic data set coming from a three-
dimensional dynamical system. This is a numerically gener-
ated data set. It is also a generic data set.

Next we carry out a differential embedding of this data set
in R3. In the reconstructed phase space with coordinates
(xstd , ẋstd , ẍstd) we look at the projection in the(xstd , ẋstd)
plane. This is shown in Fig. 10. One advantage of such a
projection is that all the fixed points are located along the
abscissa. Points in the upper half plane move to the right and
points in the lower half plane move to the left. We see three
fixed points around which the flow rotates one way. Thus we
need at least three components for the Poincaré surface of
section. Three components of the Poincaré surface of section
are easily identified by inspection. They occur beyond points
where flows from different circles join.

Next we look at how the sections are connected by the
flow. With a little effort we see that the flow crossing section
1 is mapped either back to 1 or it goes to section 2. The flow
crossing section 2 is mapped back to 2 or it is redirected to
section 3. At section 3 a similar situation occurs—the flow
either crosses again 3 or it is mapped to section 1 going
along the band at the bottom of the projection. The transition
matrix is

T = 11 1 0

0 1 1

1 0 1
2 .

From this matrix we extract the following connectivity ma-
trix:FIG. 9. Chaotic data set.

TABLE I. Enumeration of canonical forms up to genus 9.

g m sp1,p2, . . . ,pnd n1n2. . .ng−1

1 1 (0) 1

3 2 (2) 11

4 3 (3) 111

5 4 (4) 1111

5 3 (2,2) 1212

6 5 (5) 11111

6 4 (3,2) 12112

7 6 (6) 111111

7 5 (4,2) 112121

7 5 (3,3) 112112

7 4 (2,2,2) 122122

7 4 (2,2,2) 131313

8 7 (7) 1111111

8 6 (5,2) 1211112

8 6 (4,3) 1211121

8 5 (3,2,2) 1212212

8 5 (3,2,2) 1221221

8 5 (3,2,2) 1313131

9 8 (8) 11111111

9 7 (6,2) 11111212

9 7 (5,3) 11112112

9 7 (4,4) 11121112

9 6 (4,2,2) 11122122

9 6 (4,2,2) 11131313

9 6 (4,2,2) 11212212

9 6 (4,2,2) 12121212

9 6 (3,3,2) 11212122

9 6 (3,3,2) 11221122

9 6 (3,3,2) 11221212

9 6 (3,3,2) 11311313

9 5 (2,2,2,2) 12221222

9 5 (2,2,2,2) 12313132

9 5 (2,2,2,2) 14141414
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C = 11 0 0

0 1 0

0 0 1
2 .

This means that we have a cyclic configuration and the best
candidate for a canonical form is the one corresponding to
genus 4 in Table I. The only other possible choicessince
m=3, n=1 or n=2 onlyd is the form that has genus 5 and
three circlessthree focal points and two saddlesd. However,
this requires another component for the Poincaré surface of
section to be associated with one of the holes in the attractor.
Upon careful examination we see that there is no location
where we can put another such component and not have a
one-to-one mapping by the flow. Thus the right choice is the
genus-4 canonical form. This form is presented graphically
in Fig. 5scd. We would like to emphasize that from our
analysis we cannot conclude that the branched manifold as-
sociated with our system is the one in Fig. 5sad or 5sbd. We
do not know at this stage the number of branches or the way
they are connected to the branch lines. This follows from the
fact that the canonical form does not uniquely determine the
branched manifold. It rather serves as an organizer indicating
the number of singular sets and places constraints on the
connectivity between branches. An additional constraint is
put on the way branches fold when parameter values are
changed—branches connecting to the same branch line but
coming from different “tubes” in the embedding manifold
must fold so that they do not intersect each otherssee Ref.
f1gd.

In fact the data set for our example actually came from a
threefold cover of the Rössler system. A numerically com-
puted solution approaching a strange attractor is presented in
Fig. 11. We plot only a projection on theXY plane since the
cover was constructed by applying rotation about thez axis.
The generic data set in Fig. 9 is a linear combination

− xstdsinsfd + ystdcossfd,

where the anglef was chosen so that there is a large sepa-
ration between the unstable foci. If we take thexstd variable

sf=3p /2d, two of the fixed points will be nearly degenerate
in the differential embedding.

X. DISCUSSION

We believe that the classification scheme in terms of ca-
nonical forms presented in this paper is an important advance
in our understanding of low-dimensional chaos. The inter-
play between topology and dynamics leads to the appearance
of a rich variety of possible structures for chaotic attractors.
So far very little of this variety has been seen in practice—
most strange attractors inR3 live inside a solid torus. Such
lack of variety is due probably to the way nature works at
this level—simple structures are abundant and complicated
ones are rare. It could also be due to the fact higher genus
attractors are difficult to model with analytic flows. Multispi-
ral attractors have been modeled by nonanalytic, piecewise
linear forcing functions[20].

Apart from the obvious use for classification purposes,
our approach can be extended in at least two other different
directions. First, the possible changes in the structure of a
strange attractor as parameter values are varied can be ex-
plored. Apart from the constraint on the way branches fold,
previously mentioned, many more interesting observations
can be made. Second, starting from the transition matrix of
the canonical form we can construct a set of coupled one-
dimensional maps of the interval representing the mapping
between components of the Poincaré surface of section after
Birman-Williams projection has been applied[15]. The study
of such maps will shed some light on orbit forcing in strange
attractors with more complicated structure.

In addition we would like to mention that we did not
consider any complications due to nontrivial(extrinsic) em-
bedding of the handle-bodies inR3. Such situations occur,
for example, if some of the handles are linked. The question
of whether it is possible for a strange attractor to live inside
such handle-body, and what impact this will have on its
structure, requires further investigation.
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FIG. 10. Differential embedding of the data set shown in Fig. 8.
The axes aresxstd , ẋstdd. The fixed points are along the abscissa.
The locations of suitably chosen components of the Poincaré sur-
face of section are shown and numbered from 1 to 3, the first being
the leftmost one.

FIG. 11. A projection on theXY plane of the strange attractor of
the threefold cover of the Rössler system.
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